가톨릭대학교 성심로고

로컬네비게이션

전체메뉴

전체메뉴

검색

상세정보

Modern Computer Vision with PyTorch

Ayyadevara, V. Kishore

상세정보
자료유형단행본
개인저자Ayyadevara, V. Kishore.
Reddy, Yeshwanth.
서명/저자사항Modern Computer Vision with PyTorch/ V. Kishore Ayyadevara, Yeshwanth Reddy.
발행사항[New York] : Packt Publishing, 2020.
형태사항824 p. : ill. ; 24 cm.
ISBN9781839213472 (pbk.)
1839213477 (pbk.)
서지주기Includes bibliographical references and index.
일반주제명Computers --Data Science --Neural Networks.
Electronic books.
서비스 이용안내
  • 보존서고도서 신청보존서고도서 신청
  • 서가에 없는 도서서가에 없는 도서
  • 야간대출 이미지야간대출
  • 인쇄인쇄

전체

전체 소장정보 목록
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 W144580 006.32 A989m 중앙도서관/제2자료실(4F)/ 대출가능

초록

목차 일부

Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions



Key Features

Implement solutions to 50 real-w...

목차 전체

Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions



Key Features

Implement solutions to 50 real-world computer vision applications using PyTorch
Understand the theory and working mechanisms of neural network architectures and their implementation
Discover best practices using a custom library created especially for this book


Book Description

Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets.



You''ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You''ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you''ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You''ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you''ll move your NN model to production on the AWS Cloud.



By the end of this book, you''ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.



What You Will Learn

Train a NN from scratch with NumPy and PyTorch
Implement 2D and 3D multi-object detection and segmentation
Generate digits and DeepFakes with autoencoders and advanced GANs
Manipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGAN
Combine CV with NLP to perform OCR, image captioning, and object detection
Combine CV with reinforcement learning to build agents that play pong and self-drive a car
Deploy a deep learning model on the AWS server using FastAPI and Docker
Implement over 35 NN architectures and common OpenCV utilities


Who this book is for

?This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you''ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.

목차

목차 일부

Preface
Section 1 - Fundamentals of Deep Learning for Computer Vision
Section 2 - Object Classification and Detection
Section 3 - Image Manipulation
Section 4 - Combining Computer Vision with Othe...

목차 전체

Preface
Section 1 - Fundamentals of Deep Learning for Computer Vision
Section 2 - Object Classification and Detection
Section 3 - Image Manipulation
Section 4 - Combining Computer Vision with Other Techniques
Appendix A: Appendix
Other Books You May Enjoy
Index

저자소개

V Kishore Ayyadevara leads a team focused on using AI to solve problems in the healthcare space. He has more than 10 years'' experience in the field of data science with prominent technology companies. In his current role, he is responsible for developing a variety of cutting-edge analytical solutions that have an impact at scale while building strong technical teams.

Kishore has filed 8 patents at the intersection of machine learning, healthcare, and operations. Prior to this book, he authored four books in the fields of machine learning and deep learning. Kishore got his MBA from IIM Calcutta and his engineering degree from Osmania University.

Yeshwanth Reddy is a senior data scientist with a strong focus on the research and implementation of cutting-edge technologies to solve problems in the health and computer vision domains. He has filed four patents in the field of OCR. He also has 2 years of teaching experience, where he delivered sessions to thousands of students in the fields of statistics, machine learning, AI, and natural language processing. He has completed his MTech and BTech at IIT Madras.
  

*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

서평추가

서평추가
별점
총 10점 중 별0점
  • 별5점
  • 총 10점 중 별9점
  • 별4점
  • 총 10점 중 별7점
  • 별3점
  • 총 10점 중 별5점
  • 별2점
  • 총 10점 중 별3점
  • 별1점
  • 총 10점 중 별1점
  • 총 10점 중 별0점
제목입력
본문입력

글자수:0
맨 위로가기 버튼