가톨릭대학교 성심로고

로컬네비게이션

전체메뉴

전체메뉴

검색

상세정보

Principles and practice of structural equation modeling

Kline, Rex B

상세정보
자료유형단행본
개인저자Kline, Rex B.
서명/저자사항Principles and practice of structural equation modeling/ Rex B. Kline.
판사항5th ed.
발행사항New York : The Guilford Press, c2023.
형태사항xviii, 494 p. ; 25 cm.
총서사항Methodology in the social sciences
ISBN9781462552009 (cloth)
9781462551910 (paperback)
서지주기Includes bibliographical references and index.
일반주제명Structural equation modeling.
Social sciences --Statistical methods --Data processing.
서비스 이용안내
  • 보존서고도서 신청보존서고도서 신청
  • 서가에 없는 도서서가에 없는 도서
  • 야간대출 이미지야간대출
  • 인쇄인쇄

전체

전체 소장정보 목록
No. 등록번호 청구기호 소장처 밀집번호 도서상태 반납예정일 예약 서비스 매체정보
1 W145465 519.535 K656p5 중앙도서관/제2자료실(4F)/ 대출가능

초록

목차 일부

Significantly revised, the fifth edition of the most complete, accessible text now covers all three approaches to structural equation modeling (SEM)--covariance-based SEM, nonparametric SEM (Pearl''s ...

목차 전체

Significantly revised, the fifth edition of the most complete, accessible text now covers all three approaches to structural equation modeling (SEM)--covariance-based SEM, nonparametric SEM (Pearl''s structural causal model), and composite SEM (partial least squares path modeling). With increased emphasis on freely available software tools such as the R lavaan package, the text uses data examples from multiple disciplines to provide a comprehensive understanding of all phases of SEM--what to know, best practices, and pitfalls to avoid. It includes exercises with answers, rules to remember, topic boxes, and a new self-test on significance testing, regression, and psychometrics. The companion website supplies helpful primers on these topics as well as data, syntax, and output for the book''s examples, in files that can be opened with any basic text editor.
New to This Edition
*Chapters on composite SEM, also called partial least squares path modeling or variance-based SEM; conducting SEM analyses in small samples; and recent developments in mediation analysis.
*Coverage of new reporting standards for SEM analyses; piecewise SEM, also called confirmatory path analysis; comparing alternative models fitted to the same data; and issues in multiple-group SEM.
*Extended tutorials on techniques for dealing with missing data in SEM and instrumental variable methods to deal with confounding of target causal effects.

Pedagogical Features
*New self-test of knowledge about background topics (significance testing, regression, and psychometrics) with scoring key and online primers.
*End-of-chapter suggestions for further reading and exercises with answers.
*Troublesome examples from real data, with guidance for handling typical problems in analyses.
*Topic boxes on special issues and boxed rules to remember.
*Website promoting a learn-by-doing approach, including data, extensively annotated syntax, and output files for all the book''s detailed examples.

목차

목차 일부

Introduction
- What’s New
- Book Website
- Pedagogical Approach
- Principles > Software
- Symbols and Notation
- Enjoy the Ride
- Plan of the Book
I. Concepts, Standards, and Tools
1. Promise...

목차 전체

Introduction
- What’s New
- Book Website
- Pedagogical Approach
- Principles > Software
- Symbols and Notation
- Enjoy the Ride
- Plan of the Book
I. Concepts, Standards, and Tools
1. Promise and Problems
- Preparing to Learn SEM
- Definition of SEM
- Basic Data Analyzed in SEM
- Family Matters
- Pedagogy and SEM Families
- Sample Size Requirements
- Big Numbers, Low Quality
- Limits of This Book
- Summary
- Learn More
2. Background Concepts and Self-Test
- Uneven Background Preparation
- Potential Obstacles to Learning about SEM
- Significance Testing
- Measurement and Psychometrics
- Regression Analysis
- Summary
- Self-Test
- Scoring Criteria
3. Steps and Reporting
- Basic Steps
- Optional Steps
- Reporting Standards
- Reporting Example
- Summary
- Learn More
4. Data Preparation
- Forms of Input Data
- Positive Definiteness
- Missing Data
- Classical (Obsolete) Methods for Incomplete Data
- Modern Methods for Incomplete Data
- Other Data Screening Issues
- Summary
- Learn More
- Exercises
- Appendix 4.a. Steps of Multiple Imputation
5. Computer Tools
- Ease of Use, Not Suspension of Judgment
- Human–Computer Interaction
- Tips for SEM Programming
- Ease of Use, Not Suspension of Judgment
- Commercial versus Free Computer Tools
- R Packages for SEM
- Free SEM Software with Graphical User Interfaces
- Commercial SEM Computer Tools
- SEM Resources for Other Computing Environments
- Summary
II. Specification, Estimation, and Testing
6. Nonparametric Causal Models
- Graph Vocabulary and Symbolism
- Contracted Chains and Confounding
- Covariate Selection
- Instrumental Variables
- Conditional Independencies and Other Types of Bias
- Principles for Covariate Selection
- d-Separation and Basis Sets
- Graphical Identification Criteria
- Detailed Example
- Summary
- Learn More
- Exercises
7. Parametric Causal Models
- Model Diagram Symbolism
- Diagrams for Contracted Chains and Assumptions
- Confounding in Parametric Models
- Models with Correlated Causes or Indirect Effects
- Recursive, Nonrecursive, and Partially Recursive Models
- Detailed Example
- Summary
- Learn More
- Exercises
- Appendix 7.a. Advanced Topics in Parametric Models
8. Local Estimation and Piecewise SEM
- Rationale of Local Estimation
- Piecewise SEM
- Detailed Example
- Summary
- Learn More
- Exercises
9. Global Estimation and Mean Structures
- Simultaneous Methods and Error Propagation
- Maximum Likelihood Estimation
- Default ML
- Analyzing Nonnormal Data
- Robust ML
- FIML for Incomplete Data versus Multiple Imputation
- Alternative Estimators for Continuous Outcomes
- Fitting Models to Correlation Matrices
- Healthy Perspective on Estimators and Global Estimation
- Detailed Example
- Introduction to Mean Structures
- Précis of Global Estimation
- Summary
- Learn More
- Exercises
- Appendix 9.a. Types of Information Matrices and Computer Options
- Appendix 9.b. Casewise ML Methods for Data Missing Not at Random
10. Model Testing and Indexing
- Model Testing
- Model Chi-Square
- Scaled Chi-Squares and Robust Standard Errors for Nonnormal Distributions
- Model Fit Indexing
- RMSEA
- CFI
- SRMR
- Thresholds for Approximate Fit Indexes
- Recommended Approach to Fit Evaluation
- Global Fit Statistics for the Detailed Example
- Power and Precision
- Summary
- Learn More
- Exercises
- Appendix 10.a. Significance Testing Based on the RMSEA
11. Comparing Models
- Nested Models
- Building and Trimming
- Empirical versus Theoretical Respecification
- Chi-Square Difference Test
- Modification Indexes and Related Statistics
- Intelligent Automated Search Strategies
- Model Building for the Detailed Example
- Comparing Nonnested Models
- Equivalent Models
- Coping with Equivalent or Nearly Equivalent Models
- Summary
- Learn More
- Exercises
- Appendix 11.a. Other Types of Model Relations and Tests
12. Comparing Groups
- Issues in Multiple-Group SEM
- Detailed Example for a Path Model of Achievement and Delinquency
- Tests for Conditional Indirect Effects over Groups
- Summary
- Learn More
- Exercises
III. Multiple-Indicator Approximation of Concepts
13. Multiple-Indicator Measurement
- Concepts, Indicators, and Proxies
- Reflective Measurement and Effect Indicators
- Causal–Formative Measurement and Causal Indicators
- Composite Measurement and Composite Indicators
- Mixed-Model Measurement
- Considerations in Selecting a Measurement Model
- Cautions on Formative Measurement
- Summary
14. Confirmatory Factor Analysis
- EFA versus CFA
- Suggestions for Selecting Indicators
- Basic CFA Models
- Other Methods for Scaling Factors
- Detailed Example for a Basic CFA Model of Cognitive Abilities
- Respecification of CFA Models
- Estimation Problems
- Equivalent CFA Models
- Special Tests with Equality Constraints
- Models for Multitrait–Multimethod Data
- Second-Order and Bifactor Models with General Factors
- Summary
- Learn More
- Exercises
- Appendix 14.a. Identification Rules for Correlated Errors or Multiple Loadings
15. Structural Regression Models
- Full SR Models
- Two-Step Modeling
- Other Modeling Strategies
- Detailed Example of Two-Step Modeling in a High-Risk Sample
- Partial SR Models with Single Indicators
- Example for a Partial SR Model
- Summary
- Learn More
- Exercises
16. Composite Models
- Modern Composite Analysis in SEM
- Disambiguation of Terms
- Special Computer Tools
- Motivating Example
- Alternative Composite Model
- Partial Least Squares Path Modeling Algorithm
- PLS PM Analysis of the Composite Model
- Henseler–Ogasawara Specification and ML Analysis
- Summary
- Learn More
- Exercises
IV. Advanced Techniques
17. Analyses in Small Samples
- Suggestions for Analyzing Common Factor Models
- Analysis of a Common Factor Model in a Small Sample
- Controlling Measurement Error in Manifest Variable Path Models
- Adjusted Test Statistics for Small Samples
- Bayesian Methods and Regularized SEM
- Summary
- Learn More
- Exercises
18. Categorical Confirmatory Factor Analysis
- Basic Estimation Options for Categorical Data
- Overview of Continuous/Categorical Variable Methodology
- Latent Response Variables and Thresholds
- Polychoric Correlations
- Measurement Model and Diagram
- Methods to Scale Latent Response Variables
- Estimators, Adjusted Test Statistics, and Robust Standard Errors
- Models with Continuous and Ordinal Indicators
- Detailed Example for Items about Self-Rated Depression
- Other Estimation Options for Categorical CFA
- Item Response Theory and CFA
- Summary
- Learn More
- Exercises
19. Nonrecursive Models with Causal Loops
- Causal Loops
- Assumptions of Causal Loops
- Identification Requirements
- Respecification of Nonrecursive Models That Are Not Identified
- Order Condition and Rank Condition
- Detailed Example for a Nonrecursive Partial SR Model
- Blocked-Error R² for Nonrecursive Models
- Summary
- Learn More
- Exercises
- Appendix 19.a. Evaluation of the Rank Condition
20. Enhanced Mediation Analysis
- Mediation Analysis in Cross-Sectional Designs
- Effect Sizes for Indirect Effects
- Cross-Lag Panel Designs for Mediation
- Conditional Process Analysis
- Causal Mediation Analysis Based on Nonparametric Models and Counterfactuals
- Reporting Standards for Mediation Studies
- Summary
- Learn More
- Exercises
21. Latent Growth Curve Models
- Basic Latent Growth Models
- Data Set for Analyzing Basic Growth Models with No Covariates
- Example Analyses of Basic Growth Models
- Example for a Growth Predictor Model with Time-Invariant Covariates
- Practical Suggestions for Latent Growth Modeling
- Extensions of Latent Growth Models
- Summary
- Learn More
- Exercises
- Appendix 21.a. Unequal Measurement Intervals and Options for Defining the Intercept
22. Measurement Invariance
- Levels of Invariance
- Analysis Decisions
- Partial Measurement Invariance
- Detailed Example for a Two-Factor Model of Divergent Thinking
- Practical Suggestions for Measurement Invariance Testing
- Measurement Invariance Testing in Categorical CFA
- Other Statistical Approaches to Estimating Measurement Invariance
- Summary
- Exercises
23. Best Practices in SEM
- Resources
- Bottom Lines and Statistical Beauty
- Mightily Distinguish Your Work (Be a Hero)
- Family Relations
- Specification
- Identification
- Measures
- Sample and Data
- Estimation
- Respecification
- Tabulation
- Interpretation
- Summary
- Learn More
Suggested Answers to Exercises
References
Author Index
Subject Index
About the Author

저자소개

Rex B. Kline, PhD, is Professor of Psychology at Concordia University in Montréal, Québec, Canada. Since earning a doctorate in clinical psychology, he has conducted research on the psychometric evaluation of cognitive abilities, behavioral and scholastic assessment of children, structural equation modeling, training of researchers, statistics reform in the behavioral sciences, and usability engineering in computer science. Dr. Kline has published a number of chapters, journal articles, and books in these areas.

이전 다음

이전 다음


*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

서평추가

서평추가
별점
총 10점 중 별0점
  • 별5점
  • 총 10점 중 별9점
  • 별4점
  • 총 10점 중 별7점
  • 별3점
  • 총 10점 중 별5점
  • 별2점
  • 총 10점 중 별3점
  • 별1점
  • 총 10점 중 별1점
  • 총 10점 중 별0점
제목입력
본문입력

글자수:0
맨 위로가기 버튼