목차 일부
[제1권]
CHAPTER 1 소개 1
1.1 인공지능이란 무엇인가? 2
1.2 인공지능의 기반 학문 6
1.3 인공지능의 역사 20
1.4 인공지능의 현재 수준 35
1.5 요약 37
연습문제 39
CHAPTER 2 지능적 에이전트 43
2.1 에이전트와 환경 44
2.2 좋은 행동: 합리성 개념 46...
목차 전체
[제1권]
CHAPTER 1 소개 1
1.1 인공지능이란 무엇인가? 2
1.2 인공지능의 기반 학문 6
1.3 인공지능의 역사 20
1.4 인공지능의 현재 수준 35
1.5 요약 37
연습문제 39
CHAPTER 2 지능적 에이전트 43
2.1 에이전트와 환경 44
2.2 좋은 행동: 합리성 개념 46
2.3 환경의 본성 51
2.4 에이전트의 구조 58
2.5 요약 73
연습문제 76
CHAPTER 3 검색을 통한 문제 해결 79
3.1 문제 해결 에이전트 80
3.2 문제의 예 86
3.3 해답의 검색 92
3.4 정보 없는 검색 전략 99
3.5 정보 있는(발견법적) 검색 전략들 112
3.6 발견법적 함수 124
3.7 요약 131
연습문제 138
CHAPTER 4 고급 검색 기법 147
4.1 국소 검색 알고리즘과 최적화 문제 148
4.2 연속 공간의 국소 검색 158
4.3 비결정론적 동작들을 수반한 검색 162
4.4 부분 관찰 가능 환경의 검색 168
4.5 온라인 검색 에이전트와 미지 환경 178
4.6 요약 186
연습문제 191
CHAPTER 5 대항 검색 195
5.1 게임 195
5.2 게임의 최적 결정 198
5.3 알파베타 가지치기 202
5.4 불완전한 실시간 결정 207
5.5 확률론적 게임 214
5.6 부분 관찰 가능 게임 218
5.7 최고 수준의 게임 플레이 프로그램들 224
5.8 대안 접근방식들 227
5.9 요약 229
연습문제 237
CHAPTER 6 제약 만족 문제 245
6.1 제약 만족 문제의 정의 246
6.2 제약 전파: CSP의 추리 252
6.3 CSP를 위한 역추적 검색 260
6.4 CSP를 위한 국소 검색 267
6.5 문제의 구조 269
6.6 요약 275
연습문제 280
CHAPTER 7 논리적 에이전트 285
7.1 지식 기반 에이전트 286
7.2 웜푸스 세계 288
7.3 논리 292
7.4 명제 논리: 아주 간단한 논리 296
7.5 명제 정리 증명 303
7.6 효과적인 명제 모형 점검 316
7.7 명제 논리에 기초한 에이전트 322
7.8 요약 333
연습문제 340
CHAPTER 8 1차 논리 347
8.1 표현의 재고찰 348
8.2 1차 논리의 구문과 의미론 353
8.3 1차 논리의 활용 366
8.4 1차 논리의 지식 공학 374
8.5 요약 381
연습문제 384
CHAPTER 9 1차 논리의 추리 393
9.1 명제 추리 대 1차 추리 394
9.2 단일화와 승격 397
9.3 전방 연쇄 403
9.4 후방 연쇄 412
9.5 분해 421
9.6 요약 435
연습문제 440
CHAPTER 10 고전적 계획 수립 447
10.1 고전적 계획 수립의 정의 448
10.2 상태 공간 검색으로서의 계획 수립을 위한 알고리즘 455
10.3 계획 수립 그래프 463
10.4 그밖의 고전적 계획 수립 접근방식 472
10.5 계획 수립 접근방식들의 분석 478
10.6 요약 480
연습문제 484
CHAPTER 11 실세계에서의 계획 수립과 실행 489
11.1 시간, 일정, 자원 490
11.2 계통적 계획 수립 495
11.3 비결정론적 정의역에서의 계획 수립과 실행 506
11.4 다중 에이전트 계획 수립 518
11.5 요약 525
연습문제 531
CHAPTER 12 지식 표현 533
12.1 존재론 공학 534
12.2 범주와 객체 536
12.3 사건 544
12.4 정신적 사건과 정신적 객체 550
12.5 범주에 대한 추론 시스템 554
12.6 기본 정보를 이용한 추론 560
12.7 인터넷 쇼핑 세계 565
12.8 요약 571
연습문제 579
찾아보기 587
[제2권]
CHAPTER 13 불확실성의 정량화 1
13.1 불확실성하에서의 행동 1
13.2 기본적인 확률 표기법 6
13.3 완전 결합 분포를 이용한 추리 14
13.4 독립성 18
13.5 베이즈 규칙과 그 용법 20
13.6 웜푸스 세계의 재고찰 25
13.7 요약 29
연습문제 33
CHAPTER 14 확률적 추론 39
14.1 불확실한 정의역의 지식 표현 40
14.2 베이즈망의 의미론 43
14.3 조건부 확률분포의 효율적 표현 49
14.4 베이즈망의 정확한 추리 54
14.5 베이즈망의 근사적 추리 63
14.6 관계적 확률 모형과 1차 확률 모형 74
14.7 불확실한 추론에 대한 다른 접근방식들 82
14.8 요약 89
연습문제 97
CHAPTER 15 시간에 따른 확률적 추론 105
15.1 시간과 불확실성 106
15.2 시간적 모형에서의 추리 111
15.3 은닉 마르코프 모형 120
15.4 칼만 필터 127
15.5 동적 베이즈망 135
15.6 다수의 객체를 추적 145
15.7 요약 149
연습문제 153
CHAPTER 16 간단한 의사결정 159
16.1 불확실성하에서의 믿음과 욕구의 결합 160
16.2 효용이론의 기초 161
16.3 효용 함수 165
16.4 다중 특성 효용 함수 174
16.5 의사결정망 179
16.6 정보의 가치 182
16.7 결정이론적 전문가 시스템 187
16.8 요약 191
연습문제 196
CHAPTER 17 복잡한 의사결정 203
17.1 순차적 의사결정 문제 204
17.2 평가치 반복 211
17.3 방침 반복 216
17.4 부분 관찰 가능 MDP 218
17.5 다중 에이전트 의사결정: 게임이론 228
17.6 메커니즘 설계 244
17.7 요약 251
연습문제 256
CHAPTER 18 견본을 통한 학습 261
18.1 학습의 여러 형태 262
18.2 감독 학습 264
18.3 의사결정 트리의 학습 267
18.4 최고의 가설의 평가와 선택 279
18.5 학습 이론 286
18.6 선형 모형을 이용한 회귀와 분류 291
18.7 인공 신경망 302
18.8 비매개변수적 모형 313
18.9 지지 벡터 기계 321
18.10 앙상블 학습 326
18.11 실용적인 기계 학습 331
18.12 요약 336
연습문제 344
CHAPTER 19 학습과 지식 349
19.1 학습의 논리적 형식화 349
19.2 학습에서의 지식 359
19.3 설명 기반 학습 363
19.4 유관성 정보를 이용한 학습 368
19.5 귀납적 논리 프로그래밍 372
19.6 요약 383
연습문제 387
CHAPTER 20 확률 모형의 학습 389
20.1 통계적 학습 390
20.2 완전 자료를 이용한 학습 393
20.3 숨겨진 변수들이 있는 학습: EM 알고리즘 406
20.4 요약 416
연습문제 420
CHAPTER 21 강화 학습 423
21.1 소개 423
21.2 수동 강화 학습 425
21.3 능동 강화 학습 433
21.4 강화 학습의 일반화 440
21.5 방침 검색 443
21.6 강화 학습의 응용 446
21.7 요약 449
연습문제 455
CHAPTER 22 자연어 처리 457
22.1 언어 모형 458
22.2 텍스트 분류 463
22.3 정보 조회 466
22.4 정보 추출 473
22.5 요약 485
연습문제 489
CHAPTER 23 자연어 의사소통 491
23.1 구 구조 문법 492
23.2 구문 분석(파싱) 496
23.3 증강 문법과 의미론적 해석 502
23.4 기계 번역 513
23.5 음성 인식 520
23.6 요약 527
연습문제 533
CHAPTER 24 지각 539
24.1 영상 형성 541
24.2 초기 영상 처리 연산들 547
24.3 겉보기를 이용한 물체 인식 555
24.4 3차원 세계의 재구축 560
24.5 구조적 정보로부터 물체 인식 572
24.6 시각의 활용 576
24.7 요약 581
연습문제 586
CHAPTER 25 로봇공학 589
25.1 소개 589
25.2 로봇 하드웨어 592
25.3 로봇 지각 598
25.4 운동 계획의 수립 606
25.5 불확실한 운동의 계획 614
25.6 운동의 실행 618
25.7 로봇공학 소프트웨어 구조 625
25.8 응용 영역들 628
25.9 요약 632
연습문제 638
CHAPTER 26 철학적 토대 645
26.1 약 인공지능: 기계가 지능적으로 행동할 수 있는가? 646
26.2 강 인공지능: 기계가 정말로 생각할 수 있는가? 653
26.3 인공지능 개발의 윤리와 위험 662
26.4 요약 670
연습문제 674
CHAPTER 27 인공지능의 현재와 미래 677
27.1 에이전트의 구성요소들 678
27.2 에이전트 아키텍처 681
27.3 인공지능 연구의 올바른 방향 683
27.4 인공지능이 정말로 성공한다면? 685
APPENDIX A 수학적 배경 687
A.1 복잡도 분석과 O() 표기법 687
A.2 벡터, 행렬, 선형 대수 690
A.3 확률분포 692
APPENDIX B 언어와 알고리즘에 관해 697
B.1 BNF를 이용한 언어의 정의 697
B.2 알고리즘 서술에 쓰이는 의사코드 698
B.3 온라인 도움말 700
참고문헌 701
찾아보기 749
서평 (0 건)
*주제와 무관한 내용의 서평은 삭제될 수 있습니다.
서평추가