가톨릭대학교 성심로고

로컬네비게이션

전체메뉴

전체메뉴

검색

상세정보

(PyTorch를 활용한) 강화학습/심층강화학습 실전 입문 : 파이토치로 익히는 기초 강화학습 및 심층강화학습 알고리즘의 원리와 구현

소천웅태랑

상세정보
자료유형단행본
개인저자소천웅태랑
심효섭
서명/저자사항(PyTorch를 활용한) 강화학습/심층강화학습 실전 입문 : 파이토치로 익히는 기초 강화학습 및 심층강화학습 알고리즘의 원리와 구현 / 오가와 유타로 지음 ; 심효섭 옮김.
발행사항파주 : 위키북스, 2018.
형태사항xiv, 242 p. : 삽화, 표 ; 24 cm.
총서사항DS = 위키북스 데이터 사이언스 시리즈 ; 025
원서명つくりながら學ぶ!深層强化學習 : PyTorchによる實踐プログラミング
기타표제Q러닝, SarSa, DQN, DDQN, A3C, A2C
ISBN9791158391287
일반주기 오가와 유타로의 한문명은 '小川雄太郞'임
서지주기각 장마다 참고자료, 색인(p. 241-242) 포함
비통제주제어인공지능,머신러닝,강화학습
서비스 이용안내
  • 보존서고도서 신청보존서고도서 신청
  • 서가에 없는 도서서가에 없는 도서
  • 야간대출 이미지야간대출
  • 인쇄인쇄

전체

전체 소장정보 목록
No. 등록번호 청구기호 소장처 밀집번호 도서상태 반납예정일 예약 서비스 매체정보
1 E528937 006.31 소813ㅈ심 중앙도서관/제2자료실(4F)/ 대출가능
2 E528938 006.31 소813ㅈ심 c.2 중앙도서관/제2자료실(4F)/ 대출가능

초록

목차 일부


강화학습과 심층강화학습 알고리즘을 직접 구현하면서 이해한다!

이 책에서는 강화학습이나 딥러닝 같은 이론보다는 강화학습을 실제로 구현하는 데 초점을 맞춘다. 연구자가 아닌 일반인을 대상으로 실제로 강화학습 알고리즘을 구현하는 과정과 통해 강화학습 및 강화학습에 딥러닝을 접목한 심층강화학습을 이해하는 것을 목표로 한다. 따라서 이론보다는 구현을 중시하고 코...

목차 전체


강화학습과 심층강화학습 알고리즘을 직접 구현하면서 이해한다!

이 책에서는 강화학습이나 딥러닝 같은 이론보다는 강화학습을 실제로 구현하는 데 초점을 맞춘다. 연구자가 아닌 일반인을 대상으로 실제로 강화학습 알고리즘을 구현하는 과정과 통해 강화학습 및 강화학습에 딥러닝을 접목한 심층강화학습을 이해하는 것을 목표로 한다. 따라서 이론보다는 구현을 중시하고 코드와 그에 대한 설명을 많이 다룬다. 초보 수준의 파이썬 프로그래밍 및 선형대수에 대한 지식을 갖췄고, 딥러닝과 강화학습에 대해 관심은 있지만 자세한 구현 방법을 알지 못하는 분들이라면 이 책을 통해 강화학습 및 심층강화학습 알고리즘의 원리와 구체적인 구현 방법을 손에 익힐 수 있을 것이다.

★ 이 책에서 다루는 내용 ★

◎ 강화학습 기초 이론
◎ 미로찾기를 통한 강화학습 구현
◎ 역진자 문제를 통한 강화학습 구현
◎ 파이토치를 이용한 딥러닝 구현
◎ 심층강화학습 알고리즘 구현: DQN
◎ 기타 심층강화학습 알고리즘 및 구현 방법
◎ AWS GPU 환경에서 벽돌 깨기 구현

목차

목차 일부


▣ 01장: 강화학습이란 무엇인가?
1.1 머신러닝의 유형(지도학습, 비지도학습, 강화학습) 
__용어 정리 
__지도학습, 비지도학습, 강화학습 
1.2 강화학습 및 심층강화학습의 역사 
__강화학습과 뇌에서 일어나는 학습 
__강화학습과 딥러닝의 결합 
1.3 심층강화학습의 응용 사례 
__심층강화학습의 응용 사례 
__심층강화학습의 미래 

▣ 02...

목차 전체


▣ 01장: 강화학습이란 무엇인가?
1.1 머신러닝의 유형(지도학습, 비지도학습, 강화학습) 
__용어 정리 
__지도학습, 비지도학습, 강화학습 
1.2 강화학습 및 심층강화학습의 역사 
__강화학습과 뇌에서 일어나는 학습 
__강화학습과 딥러닝의 결합 
1.3 심층강화학습의 응용 사례 
__심층강화학습의 응용 사례 
__심층강화학습의 미래 

▣ 02장: 미로찾기를 위한 강화학습 구현
2.1 주피터 노트북 체험 페이지 사용법 
__이번 장에서 사용할 강화학습 구현 및 실행 환경 
__주피터 노트북 체험 페이지 사용법 
2.2 미로와 에이전트 구현 
__미로 구현 
__에이전트 구현 
2.3 정책반복 구현
__정책반복과 가치반복 
__정책경사 알고리즘에 따라 에이전트 이동시키기 
__정책경사 알고리즘으로 정책 수정 
__정책경사 알고리즘에 대한 이론 
__보상 
2.4 가치반복 알고리즘 관련 용어 정리 
__행동가치와 상태가치 
__벨만 방정식과 마르코프 결정 프로세스 
__ε-greedy 알고리즘으로 정책 구현하기 
2.5 Sarsa 알고리즘 구현 
__행동가치 함수 Q(s,a)를 Sarsa 알고리즘으로 수정 
__Sarsa로 미로찾기 구현 
__Q러닝의 알고리즘 
__Q러닝 구현 
2.6 Q러닝 구현 

▣ 03장: 역진자 문제를 위한 강화학습 구현
3.1 로컬 PC에 강화학습 개발환경 갖추기 
__파이썬 실행 환경인 아나콘다 설치 
__강화학습에 사용할 라이브러리 설치 
3.2 역진자 태스크 “CartPole” 
__CartPole이란? 
__CartPole 구현 
3.3 다변수, 연속값 상태를 표형식으로 나타내기 
__CartPole의 상태 
__상태의 이산변수 변환 구현 
3.4 Q러닝 구현 

▣ 04장: 파이토치를 이용한 딥러닝 구현
4.1 신경망과 딥러닝의 역사 
__첫 번째 신경망 연구 붐 
__두 번째 신경망 연구 붐 
__세 번째 신경망 연구 붐 
4.2 딥러닝의 계산 과정 
__추론 단계 
__학습 단계 
4.3 파이토치를 이용한 MNIST 손글씨 이미지 분류 구현 
__파이토치란? 
__파이토치 개발환경 갖추기 
__MNIST 데이터 다운로드 
__파이토치를 이용한 딥러닝 구현 
____1. 데이터 전처리 
____2. DataLoader 생성 
____3. 신경망 구성 
____4. 오차함수 및 최적화 기법 설정 
____5. 학습 및 추론 설정 
____6. 학습 및 추론 수행 
파이토치 사용법에 대한 보충 설명 

▣ 05장: 딥러닝을 적용한 강화학습 - DQN 구현
5.1 딥러닝을 적용한 Q러닝 
__표형식 표현의 문제점 
__심층강화학습 알고리즘 DQN 
5.2 DQN을 구현할 때 중요한 4가지 기법 
5.3 DQN 구현(1) 
__파이토치로 DQN을 구현할 때 주의점 
__DQN 구현 
5.4 DQN 구현(2) 

▣ 06장: 딥러닝을 적용한 강화학습 - 심화 과정
6.1 심층강화학습 알고리즘 지도 
6.2 DDQN(Double-DQN) 구현 
__DDQN 
__DDQN 구현 
6.3 Dueling Network 구현 
__Dueling Network 
__Dueling Network 구현 
6.4 Prioritized Experience Replay 구현 
__Prioritized Experience Replay 
__Prioritized Experience Replay 구현 
6.5 A2C 구현 
__A2C 
__A2C 구현 

▣ 07장: AWS GPU 환경에서 벽돌 깨기 구현
7.1 벽돌 깨기 게임 “Breakout” 
7.2 AWS로 GPU를 사용하는 딥러닝 실행 환경 구성 
__우분투 터미널 설치 
__가상 서버와 통신하는 데 사용할 키 생성 
__AWS에서 딥러닝을 실행할 가상 서버 만들기 
__벽돌 깨기 게임 실행 환경 구축 
7.3 Breakout 학습에서 중요한 포인트 4가지 
__로컬 PC 환경 설정 
__Breakout 게임을 학습하는 데 중요한 포인트 4가지 
7.4 A2C 구현(1) 
7.5 A2C 구현(2)

저자소개


저자 : 오가와 유타로
주식회사 덴쓰 국제정보서비스 기술본부 개발기술부 소속. 딥러닝을 비롯한 머신러닝 관련 기술의 연구개발 및 워크스타일이노베이션실의 HR 데이터 분석을 담당하고 있다. 아카시 공업고등전문학교, 도쿄대학 공학부를 거쳐 도쿄대학 대학원의 짐보-코타니 연구실에서 뇌기능 계측 및 계산 신경과학을 연구했으며 2016년 박사학위를 취득했다. 도쿄대학 특임연구원을 거쳐 현직에는 2017년 4월부터 종사 중이다.
ㆍ깃허브: https://github.com/YutaroOgawa
ㆍQiita: https://qiita.com/sugulu

역자 : 심효섭
연세대학교 문헌정보학과를 졸업하고 모교 중앙도서관과의 인연으로 도서관 솔루션 업체에서 일하게 되면서 개발을 시작했다. 네이버에서 웹 서비스 개발 업무를 맡았으며, 웹 서비스 외에 기계학습에 대한 공부도 꾸준히 하고 있다. 최근 관심사는 회사에 속하지 않고도 지속 가능한 삶이다. 옮긴 책으로 『PyTorch를 활용한 머신러닝, 딥러닝 철저 입문』 『딥러닝 제대로 시작하기』 『그림과 수식으로 배우는 통통 딥러닝』 등 10여 종이 있다.
 
이전 다음


*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

서평추가

서평추가
별점
총 10점 중 별0점
  • 별5점
  • 총 10점 중 별9점
  • 별4점
  • 총 10점 중 별7점
  • 별3점
  • 총 10점 중 별5점
  • 별2점
  • 총 10점 중 별3점
  • 별1점
  • 총 10점 중 별1점
  • 총 10점 중 별0점
제목입력
본문입력

글자수:0
맨 위로가기 버튼